Hydroxy-Terminated Conjugated Polymer Nanoparticles Have Near-Unity Bright Fraction and Reveal Cholesterol-Dependence of IGF1R Nanodomains
نویسندگان
چکیده
Fluorescent nanoparticles have enabled many discoveries regarding how molecular machines function. Quantum dots have been the dominant class of fluorescent nanoparticles but suffer from blinking and from a substantial dark fraction--particles where the fluorescence is never seen--complicating any analysis of biological function. Nanoparticles composed of conjugated fluorescent polymers (Pdots) have recently been shown to have high brightness and no blinking. Here we develop a robust and efficient means to measure the dark fraction of Pdots, conjugating Atto dyes to the nanoparticles and testing fluorescence colocalization of dye and Pdot puncta. This established that the Pdots we generated had minimal dark fraction: ∼3%. The application of nanoparticles in biological environments is highly sensitive to surface functionalization. For Pdots we found that passivation with uncharged hydroxy-terminated polyethylene glycol caused a dramatic reduction in nonspecific cell binding and aggregation compared to a charged coating. Using carbonyl di-imidazole the hydroxy-Pdots were functionalized efficiently with streptavidin for high stability targeting, allowing specific labeling of mammalian cells. Type I insulin-like growth factor receptor (IGF1R) regulates cell survival and development, with roles in aging, heart disease, and cancer. We used hydroxy-Pdots to track the dynamics of IGF1R on a breast cancer cell-line, determining the diffusion characteristics and showing cholesterol-containing membrane nanodomains were important for receptor mobility at the plasma membrane. The near-unity bright fraction and low nonspecific binding of hydroxy-Pdots, combined with Pdot photostability and lack of blinking, provides many advantages for investigations at the single molecule level.
منابع مشابه
Thin film fabricated from solution-dispersible porous hyperbranched conjugated polymer nanoparticles without surfactants.
Porous hyperbranched conjugated polymer nanoparticles with an average particle size of 20-60 nm and a specific surface area of 225 m(2) g(-1) have been prepared through Suzuki polymerization in a miniemulsion, which could be stably dispersed in common organic solvents after complete removal of surfactants. Furthermore, a simple spin-coating method for the preparation of homogeneous transparent ...
متن کاملConjugated polymer nanoparticles for biomedical in vivo imaging.
Conjugated polymer nanoparticles, produced by in situ colloidal Knoevenagel polymerization, show advantageous properties (bright emission, colloidal/chemical stability and mesoscopic size range) that allow the successful in vivo application to real-time sentinel lymph node mapping in a mouse model.
متن کاملUltrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging
Fluorescent and biocompatible organic nanoparticles have attracted great interest in cancer detection and imaging, but the nonspecific cellular uptake has limited the detection specificity and sensitivity. Herein, the authors report the ultrasmall conjugated polymer nanoparticles (CPNs) with bright far-red/near-infrared emission for targeted cancer imaging with high specificity. The sizes of th...
متن کاملFolate-Conjugated Gold Nanoparticles (Synthesis, Characterization and Design for Cancer Cells Nanotechnology-based Targeting)
A new folate-conjugated gold nanoparticle (AuNP) has been designed to selectively target the folate receptor that is overexpressed on the surface of tumoral cells. For this purpose, we made 4-aminothiophenol, as a bifunctional linker to react with HAuCl4 in the presence of sodium borohydride and it was binded to the AuNP surface through its thiol group. Then, we conjugated amino-terminated nano...
متن کاملFar‐Red/Near‐Infrared Conjugated Polymer Nanoparticles for Long‐Term In Situ Monitoring of Liver Tumor Growth
The design and synthesis is reported for a fluorescent conjugated polymer (CP), poly{[4,4,9,9-tetrakis(4-(octyloxy)phenyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene)]-alt-co-[4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole]} (PIDT-DBT), with absorption and emission profiles fallen within far-red/near infrared (FR/NIR) region and further demonstrate its application in long-term in vitro cell t...
متن کامل